NASA TECHNICAL
MEMORANDUM

NASA TM X- 67886

OPTIMAL ROUND TRIP SPACE TUG TRAJECTORIES.
FOR EARTH ESCAPE MISSIONS

by Vernon J. Weyers and Fred Teren
Lewis Research Center
Cleveland, Ohio

TECHNICAL PAPER proposed for presentation at
Astrodynamics Specialists Conference sponsored by the
American Astronomical Society and the American
Institute of Aeronautics and Astronautics

Fort Lauderdale, Florida, August 17-19, 1971

N?1-32323
NASA TM X- 67886



E-6478

OPTIMAL ROUND TRIP SPACE TUG TRAJECTORIES
FOR EARTH ESCAPE MISSIONS
by Vernon J. Weyers and Fred Teren

National Aeromautics and Space Administration
Lewis Research Center
Cleveland, Ohio

ABSTRACT

Optimum round trip trajectories for reusable space tug payload in-
jection missions at energy levels above Earth escape are determined. The
variational maximum principle is used to formulate and solve the mathe-
matical problem. Solutions of the resulting two point boundary value
problem are obtained by numerical integration and finite difference
Newton—~Raphson iteration techniques. A method for obtaining approximate
solutions of the mathematical problem is also presented. The approximate
solutions are much easier to obtain than the exact ones and the results
are in excellent agreement. Details of the mathematiecal analysis are
included.

Payload capability is presented as a function of the injection
energy. The effects of finite thrust level, vehicle turn—-around time,
and total trip time are included. Results are shown for various values
of stage propellant mass fraction and specific impulse. Characteristics
of the optimum trajectories are discussed.

INTRODUCTION

Long range NASA plans include development of a Reusable Space Tug
(RST). The RST may be capable of either Earth-based or space-based oper-
ation and will be used for a wide variety of orbital maneuvering and pay-
load injection and retrieval mission applications. The RST will be cap-
able of both manned and unmanned autonomous operation. When used as an
unmanned Earth~based stage for payload injection missions the RST will be
carried te a circular low Earth orbit (LEO) inside the cargo bay of the
space shuttle orbiter. It will leave the orbiter, deliver its payload
to the required injection conditions, then return to the waiting orbiter
and reenter the cargo bay for the return flight to Earth. In the un-
manned space-based mode the RST will also begin and end each mission in
LEO, possibly at an orbiting propellant depot or some other facility.
This paper presents optimum round trip trajectories for payload injection
missions at energy levels above Earth escape. The trajectories are
applicable to both Earth-based and space-based modes of operation.

The ideal performance capability of an RST for round trip missions
to energy levels above Earth escape can be easily calculated if all burns
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are assumed to be impulsive (of zero time duration). All real vehicles,
however, are limited to finite thrust levels. The burn time required to
reach the specified vis-viva injection energy (C3) is a function of the
ignition thrust-to-weight ratio (o). When the vehicle reaches the spec~
ified energy level, the payload must be separated from the RST, the RST
must be turned around in preparation for the return flight to LEO, and
any necessary separation distance between the RST and payload (to pre-
vent damage to the spacecraft by RST exhaust impingement) must be accum—
ulated. The duration of the payload separation and vehicle turn around
phase (which is the time spent at the specified C3 by the RST) is re-
ferred to as the turn-around time (TAT) in this paper. During the TAT
coast phase the RST is on a hyperbolic trajectory and its altitude is
increasing. Losses incurred during the burn phase which follows the TAT
coast are a function of the altitude at which the burn occurs and there-
fore depend on the TAT. In the ideal case, all burn phases are assumed
to take place at the LEO altitude. 1In the real case the RST leaves the
circular LEO at the instant the first burn begins and reenters the same
LEO at the instant of final burnout. The elapsed time spent out of the
LEO is called the total trip time (TTT) in this paper. The total AV
requirements and the performance capability are functions of the TTT.
The purpose of this study is to determine optimum round trip trajectories
with these real vehicle constraints included.

The maximum principle of the calculus of variations is used to for-
mulate the mathematical problem and determine the costate equations. . The
gstate and costate equations are numerically integrated to determine the
vehicle motion, the location and duration of burn phases and the final
conditions of the two point boundary value problem associated with the
optimum solution. Partial derivatives of the boundary value problem
final conditions with respect to initial conditions are obtained by
finite difference methods. The boundary value problem is solved by use
of a simple Newton—-Raphson linear iteration scheme.

In order to demonstrate the effect of the various vehicle con-
straints, some parametric results are presented. Normalized payload mass
loss (compared to the ideal calculated capability) is shown as a function
of o for discrete positive values of C3. The o ranges from 0.3 to
10.0. Results are repeated for TAT's of 3 and 6 minutes and for engine
specific impulse (I) values of 444 and 460 seconds., The values of I
were chosen to represent current and feasible liquid hydrogen-liquid
oxygen engine technology, respectively. The effects of TAT's up to
10 minutes and TTT's between 6 and 1000 hours are demonstrated for rep-
resentative cases. A TIT of 24 hours is chosen as a baseline value for
the parametric results. Propellant mass fraction (MF) values of 0.84,
0.87, and 0.90 are included. The initial LEO altitude is assumed to be
185 kilometers. Effects of the Earth's oblateness are omitted for con-
venience. '
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Trajectory Characteristics

In calculating the ideal performance capability, all burms are
assumed to occur at the LEO altitude. One might expect that for real
vehicle trajectories the RST would burn. continuously from the LEO to the
specified C3, coast for the required TAT, and then. burn continuously
until it reentered the original LEO. For C3 values above Earth escape
and reasonable values of o and TAT, optimum trajectories to the speci-
fied C3 result in very high altitudes at the end of the TAT coast.
Continuous thrust trajectories from a high altitude back to LEO require
very high AV's. The altitude following the TAT can be reduced by com-
promising the first burn thrust profile to "hold the trajectory in" but
this approach is also costly from a AV standpoint. Determination of
the optimum round trip trajectory must admit the ppssibility of alternate
powered and coast phases during both the outbound and inbound legs.

For the parameter ranges considered in this study the optimum round
trip trajectories were found to consist of:

1) A continuous main burn from the original LEO to the specified Cj.

2) The imposed TAT coast phase.

3) A retro burn which reduces the energy of the RST to a value below
Earth escape after which the RST is in an elliptical transfer
orbit., ' '

4) A coast to near apogee of the transfer orbit.

5) A short apogee burn phase which adjusts the perigee of the trans-
fer orbit to approximately the LEO altitude.

6) A coast to near perigee of the adjusted transfer orbit.

7) A final circularization burn which returns the RST to the orig-
inal LEO.

These phases are depicted graphically in sketch a.

Analysis

The problem to be solved is to maximize the payload mass which can
be delivered to a specified energy level above Earth escape by a stage
of known characteristics (I, o, and MF) which starts in a specified LEO
and returns to the same orbit after releasing the payload. For a vehicle
with infinite thrust and zero turn-around time capability, the ratio of
payload mass to initial mass (including payload) can be calculated as
Pp1_ _s@®Z-1) -1 1)
R[§(R - 1) - 1] ‘
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where ¢ dis the ratio of stage jettison mass to propellant mass and can
be written in terms of MF as

]l - MF
8=
and R 1is the ratio of ignition mass to burnout mass for. an ideal impul-
sive propulsion maneuver which imparts the AV required to reach the
specified energy level. The value of R 1is calculated as

R = AV/C

All symbols are defined in appendix A.

The variational maximum principle is used to formulate and solve the.
problem for the case of real vehicles with finite thrust levels and non-
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zero TAT capability. The two point boundary value problem associated
with the optimum solution consists of four final conditions which must
be satisfied and an equal number of initial conditions to be chosen. It
was found that because of the long flight times involved, minor adjust-
ments in the initial conditions cause large variations in the resulting.
final conditions. This extreme sensitivity makes the boundary value
problem difficult to solve by simple techniques. A number of solutions
were obtained and the trajectories examined. They consist of the seven
distinct phases described in the Trajectory Characteristics section
above.

Because of the sensitivity of the boundary value problem and based
on the observed characteristics of the optimum trajectories, an alter-
nate, approximate technique was developed. The method is based on the
assumption that the apogee burn occurs precisely at apogee, is impulsive
and tangential, and adjusts the transfer orbit perigee altitude to coin-
cide with the original LEO. The final circularization burn is also tan-
gential and impulsive. The gravity losses which would be associated with
finite thrust final burns were determined by independently integrated
calculus of variations trajectories and added to the impulsive AV re-
quirement for the final burn. Details of the approximate method analysis
are presented in appendix B. The three final conditions of the boundary
value problem associated with the approximate solution are all evaluated
at the end of the retro burn. The long transfer orbit coast phases, the
apogee burn, and the final circularization burn are not numerically inte-
grated. This boundary value problem is considerably less sensitive than
the exact one and solutions were obtained more easily.

For all cases in which a comparison was made, the payload capability
determined by the exact and approximate methods differed by no more than
two one-hundredths of one percent of the initial starting mass. The
actual comparison values are shown in table I.

The calculated apogee AV for all trajectories generated by the
approximate method was less than 50 meters per second., The AV require-
ment for the final circularization burn is a function of the energy of
the transfer orbit. For a TIT of 24 hours the transfer orbit vis-viva
energy is about -9.45 kmZ2/sec2. The final circularization AV for a TTT
of 24 hours varies from 2.79 to 2.81 km/sec. The gravity losses added to
the circularization AV requirement are a function of the energy of the.
transfer ellipse and the vehicle thrust-to-weight ratio at the start of
the final maneuver. The losses do not exceed 4 meters per second for any
of the trajectories considered in this study. '

Although not explicitly presented, the propellant requirements for a
particular case can be easily determined. The inditial mass (mo) includes
the payload mass (mpl), propellant mass (mPr),.and stage jettison mass
(mj), Since the propellant mass fraction (MF) is specified, the prepel-
lant mass can be calculated as .
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m ml
'—E£=MF<1——P— (2)
0 ™

Results and Discussion

The ideal impulsive performance capability of a reusable stage (as
calculated from eq. (1)) is shown in Figure 1. Normalized payload mass
(mpl/mo) capability is shown as a function of the vis-viva energy to
which it is delivered. The performance of Figure 1 applies to a RST
which has infinite thrust and can fly a zero TAT trajectory. .Since the
payload losses are usually small compared to the ideal capability, sub-
sequent results in this paper are in terms of normalized payload mass
loss (bmyq/mg) which allows the actual capability to be determined more
accurately.

Procedure for Using Results

The results to be presented are applicable to a variety of situa-
tions. When the initial mass (mo), the mission C3 and the RST charac—
teristics (I, o, and MF) are known, the results can be applied directly.
The initial mass is known when the RST is Earth-based and the mission is
to be accomplished with a single launch of a space shuttle of known capa-
bility, for example. When the initial mass is not specified and some
other criteria is established (e.g., specified RST propellant capacity,
specified payload mass requirement, etc.). The results can still be used,
but a simple iteration is necessary. The following steps are required:

(1) Estimate my.

(2) Calculate the ideal mpl/mO from equation (1).

(3) Determine the loss (Ampl/mo) from the appropriate curve.
(4) Calculate the actual capability as mpl/mO - Ampllmo.

(5) Compute the propellant mass required from equation (2) and any
parameters involved in the established criteria.

(6) If the desired criteria is satisfied terminate the iteration.
Otherwise adjust mg and return to step (2).

Effect of TAT and TTT

The effect of vehicle TAT on normalized payload mass loss is shown
for a representative case in Figure 2. When the TAT is zero the payload
loss is minimized but is nonzero because of the finite a. As TAT in-
creases the payload loss increases so the actual performance capability
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decreases. At a fixed TAT the losses are greater for the lower MF values.
This is true because of the higher final jettison mass and lower payload
mass associated with the lower MF which results in a lower average thrust
to mass ratio (and higher losses) during the retro and final circulariza-
tion burns.

The RST is at an energy level above Earth escape during the TAT
coast and its altitude is increasing. Since the energy remains constant
the velocity is decreasing. The reduction in energy which must be accom-
plished during the retro burn following the TAT coast is more efficiently
achieved at lower altitudes and higher velocities. It is obvious then,
both from a logical approach and from Figure 2, that the TAT should be as
short as possible. During the TAT coast the RST must be turned around in
preparation for the retroc burn. The required orientation is such that
the exhaust gases are directed almost directly toward the separated space-
craft. To prevent damage to the spacecraft by RST exhaust impingement
some minimum separation distance must be accumulated before the RST
engine is ignited for the retro maneuver. A detailed analysis to deter-
mine the minimum necessary separation distance was not undertaken as part
of this study. TAT's of 3 and 6 minutes are used as baseline values.

The performance advantage of short TAT's must be compared to the opera-
tional difficulty of separating the payload, turning the vehicle around
and accumulating the necessary separation distance in a short time.

The necessary decrease in the energy of the RST (from the payload
injection level to the LEO value) is accomplished primarily during the.
retro burn following the TAT coast and during the final circularization
burn., For all reasonable values of o and TAT, the altitude is lower
and the velocity is higher at the start of the final burn than at the
end of the retro burn. Therefore, the energy decrease is more effi-
ciently accomplished. during the final burn than during the retro burn,
and the retro burn should be kept as short as possible. The minimum
possible retro. burn for a reusable vehicle reduces the RST energy to
exactly zero (Earth escape). The resulting TIT is infinite.

The effect of finite TTT's between 6 and 1000 hours is shown in
Figure 3 for representative values of the other parameters. As TTT de-
. creases from its optimum (but impractical) value of infinity the payload
loss increases. The performance advantage of long TTT's must be compro-
mised because of the obvious operational advantages of much shorter TTIT's.
For an Earth-based, single shuttle launch mission, the orbiter must wait
for the RST in the LEO for the entire TTT. A phasing problem is involved
since the RST must rendezvous and dock with the orbiter after returning
to LEO. Proper phasing can be achieved by making slight (less than
1 hour) adjustments to the TTT. As shown in Figure 3, a change of this
magnitude has very little effect on the performance capability at the
longer TIT's. For simplicity the rendezvous requirement is ignored in
this study. 1If very short TIT's are desired, the effect of the rendez-
vous requirement would have to be included. A TIT of 24 hours is chosen
as a baseline value for demonstrating the effects of other parameters in
this study. v
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General Results

The normalized payload mass loss Ampl/mo is presented as a func-
tion of o for I = 444 and 460 seconds " in Figures 4 and 5, respec-
tively. The TTIT is 24 hours in both cases. Part (a) of both figures is
for MF = 0.90 and TAT = 3 minutes. Part (b) is for the same MF and a
TAT of 6 minutes. The (e) and (d) parts of both figures correspond to a
MF of 0.87 and TAT's of 3 and 6 minutes, respectively. Parts (e) and (f)
repeat the pattern with MF = 0.84. Attainable, positive values of Cj
are included on each of the plots. Curves that end in the middle of a
plot stop at the point where the payload capability is zero.

All parts of Figures 4 and 5 illustrate the same characteristics.
The payload losses increase as o decreases. The increase is very rapid
for o values below about 2.0 at the highest energy levels and for o
values below about 1.0 at all energy levels. This behavior is signifi-
cant since for expendable vehicle trajectories to energy levels above
Earth escape, substantially lower thrust-to-weight ratios can be toler-
ated without large payload penalties. Further examination of Figures 4
and 5 indicates that for any specific value of o the payload loss in-
creases with increasing C3, is higher for TAT = 6 minutes than for
TAT = 3 minutes, and is higher for I = 444 than for I = 460 seconds.
At constant values of a, C3, I, TAT, and TTT, the payload loss increases
with decreasing MF.

Trajectory Characteristics

The time (t) history of various trajectory parameters is presented
in Figure 6 for a representativeicase. Values of « of 10.0, 0.5, and
0.3 are included. The variation of altitude (Z2), velocity (v), vis-viva
energy (C3), flight path angle (8), thrust attitude (y), and inertial
travel angle (¢) with time .is shown in parts (a) through (f), respec-
tively. The angles 6, Yy, and ¢ are defined graphically in Figure 7.
The solid line segments in Figure 6 represent the main and retro burn
segments of the trajectory and the dashed portion applies to the TAT
coast. Parameter histories during the transfer orbit coast phase, the
apogee burn phase, and the final circularization burn are not shown. If
desired, they can be calculated from the values at the end of the retro
burn and the description of the approximate trajectory.

At t =0 the RST is in the LEO. The altitude, velocity, and
energy values are those of the LEO and are the same for any value of
a. The flight path angle is gzero because the orbit is circular and the
travel angle is zero by definition. The thrust angle at t = 0 is the
initial value determined by solving the two point boundary value problem.
It is negative and a function of «.. As a result, both 6 and z de-
crease slightly at first. The angle 6 becomes negative and 2z be-
comes less than the original LEQ altitude of 185 kilometers. As time
proceeds, v -increases; C3, ¥, and eventually 6 and =z also increase.
At the end of the main burn C3 is equal to the specified 15 km2/sec2,
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The altitude is greater than 185 kilometers and greater for lower o
values. The velocity at .the end of the main burn is that required by
the condition C3 = 15 kmz/sec2 at the burnout altitude. The angle ¢
is slightly less than 6. For optimum one-way (expendable vehicle)
trajectories, ¥ 1is equal to 6 at the specified energy level. For
optimum round trip trajectories the first burn is compromised somewhat
in order that losses incurred during the retro burn are reduced.

During the TAT coast phase, z - continues to increase as mentioned
earlier, v decreases, and C3 remains constant. At the end of the
TAT coast, the calculated value of ¢ changes instantaneously to the.
optimum value required for the retro burn. Examination of ¢ and 6
at the start of the retro indicates that the thrust and velocity vectors
are nearly antiparallel.

During the retro burn v decreases until C3 is equal to the
-9.45 km2/sec? required for the elliptical transfer orbit when
TTT = 24 hours. The thrust and velocity vectors remain nearly anti-
parallel during the retro burn.

Conclusions

Optimum round trip trajectories for payload injection missions above
Earth escape energy are determined by solving the appropriate two point
boundary value problem. The four final conditions of the boundary value
problem are extremely sensitive to small changes in the initial condi-
tions. Although difficult, the boundary value problem can be solved
using linear finite difference Newton-Raphson iteration techniques.

The optimum-trajectories consist of a continuous main burn from the
initial low Earth orbit .to the specified energy level, a coast phase of
specified duration during which the payload is separated and the vehicle
turned nearly 180 degrees, a retro burn which reduces the energy to a
value below Earth escape which is primarily a function of the desired
total trip time, a coast to near apogee of the elliptical transfer orbit,
a short apogee burn which adjusts the perigee of the transfer orbit-to a
value close to the original low Earth orbit altitude, a coast to near
perigee of the adjusted transfer orbit, and a final circularization burn
which returns the vehicle to the initial low Earth orbit.

Essentially optimum approximate trajectories can be obtained easily
by using the same simple iteration technique to solve an alternate two
point boundary value problem. - The approximate trajectories differ from
the optimum ones in that the apogee and perigee burns are assumed to be
impulsive and tangential and occur exactly at apogee and perigee. The
magnitude of the apogee burn is calculated to adjust the perigee altitude
of the transfer orbit to exactly:the original low Earth orbit value.

For maximum payload to a specified energy level above Earth escape,
the turn-around coast phase should be as short as possible and the total
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trip time as long as is operationally practical. The vehicle thrust
level has a strong effect on its performance capability. For the same
ignition thrust-to-weight ratio the losses are significantly higher for
a round trip trajectory than for a one-way trajectory to the same energy
level.
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APPENDIX A
SYMBOLS
Cq vis-viva energy, km?/sec?
c jet velocity, km/sec
E energy, kmzlsec2
e eccentricity, N.D.
E thrust direction, N.D.
G universal gravitational constant, km3/sec2—kg
H Hamiltonian, kg/sec
h angular momentum, kmZ/sec
I specific impulse, sec
J jump discontinuity in (p - H), kg/sec
m mass, kg
Ampl payload mass loss, kg
R mass ratio, mO/mf, N.D.
r radius, km
t time, sec
u throttle control, N.D.
AV characteristic velocity increment, km/sec
v velocity, km/sec
X state variable used in (D11)
Z altitude, km
o ratio of thrust to equivalent vehicle equatorial surface weight
at ignition, N.D.
B maximum mass flow rate, kg/sec

Y yvaw attitude, deg
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§ ratio of stage jettison mass to propellant mass, N.D.
€ jump factor, kg—secz/km2

n jump factor, kg—secz/kmz

0 flight path angle, deg

K power—coast switching function, N.D,

A costate variable, kg-sec/km

u costate variable, kg/km

p costate variable, kg/sec

o} costate variable, N.D.

T state variable equivalent to time, sec
¢ travel angle, deg

Y pitch attitude, deg

Subscripts:

3 apogee

e Earth

£ final

i jettison

max overall maximum
P perigee
pl payload

pr propellant

T retro burnout
0 initial
1 start of TAT coast

2 end of TAT coast
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Superscripts:
- vector
* time derivative
unit vector
+ after event
- before event
Abbreviations:
LEO low Earth orbit (circular at 185 km altitude)
MF propellant mass fraction (ratio of prépellant mass to stage mass)
RST reusable space tug

TAT turn-around time (duratiog of paylodd separation and vehicle
turn-around coast phase)

TIT  total trip time
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APPENDIX B
MATHEMATICAL FORMULATION OF APPROXIMATE SOLUTION

Because of the sensitivity of final to initial boundary value condi-
tions for rigorously optimized round-trip space-tug trajectories, an
approximate technique based on the observed characteristics of the opti-
mum trajectories was developed. . The approximate method was highly suc—
cessful from a convergence standpoint, and gave payload masses which
differed very little from the optimum values.

The numerically integrated portion of the approximate trajectory.
consists of the main burn, imposed TAT coast, and retro burn.. The retro
burn. is terminated when the coast time to perigee on the resulting ellip-
tical transfer orbit is equal to the specified TTT, less the elapsed time
to that point. The perigee altitude is not speclfled, and in general
differs from the specified LEO altitude. This difference is removed by
a small impulse which is assumed to take place precisely at apogee, with
a tangential thrust dirvection. The apogee burn modifies the orbital
period only slightly, and this difference is neglected in the mathemati-
cal formulation. The final burn is also assumed to be impulsive, uti-
lizes tangential thrusting, and takes place precisely at perigee. Since
the magnitude of the final impulse depends only on the trip time, this
burn is not included in the variational problem. However, the calculated
perigee impulse (including an appropriate loss due to finite thrust
level) is included in the calculation of final mass. The magnitude of
the apogee impulse depends on the perigee at retro burnout, and its
effect is dncluded in the variational problem, as well as in the calcula-
tion of final mass.

The variational problem to be solved is to maximize the payload mass
which can be delivered to a fixed energy level by a fixed mass fraction,
reusable space tug. After releasing the payload, the tug must satisfy
certain final conditions. A fixed duration TAT coast phase is imposed.
The available controls are the thrust direction and engine thrust level
(on or off). The mathematical prcblem is formulated by using the varia-
tional maximum principle (ref, 1), with equations of motion as follows:

. /Gme _ cBu
T = - =3 T + —;r-f (a)
r
T=v (b) (B1)
m = -gu (c)
T=1 ()

where B8 = B(7) is the maximum allowable flow rate (engine operating at
full thrust) and < (equivalent to time) is introduced to make the system
autonomous. All symbols are defined in appendix A. The controls are the
throttle u and thrust direction f, subject to |fl =1 and u=0
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(engine off) or 1 (engine on). The variational Hamiltonian is

Y Gm cBu -
H=)\'[—-3—e?+-m—f + W * vV -0Bu+p (B32)
T
where p is the multiplier for 1. The costate equations are
X = -n (a)
Gm 3Gm
W= -—2@& - Dt (b)
U=y 5
r T
(B3)
g = E%EIX - £ (c)
m
T (-l a8
pe=-Ex-t-0)uld (d)

The optimal controls are obtained by maximizing H, which results in

f=A (B4)
and
1,k >0 4
u= (BS)
0, k<0
where «k is defined as P
< (86)

K ==X -0
m

It should be noted that H is a constant of the motion and, if B is

constant, p 1is also constant.

Boundary Conditions

Define:-

t initial time

1 time at which energy level for payload jettison is achieved; start
TAT coast
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t end TAT coast and jettison payload (Actually, the payload would be

2 jettisoned as soon after tj as possible. Since there is no
propulsion between t; and tp, all payload jettison times be-
tween t; and tp are mathematically equivalent.)

tr completion of retro burn
tf final time

then B(t) is given by

Any one of the above time points may be considered fixed, since.the time.
reference is arbitrary. It is convenient to consider tq fixed, which
also fixes tp. Also, the reference value of T 1is established by
choosing <(ty) = tg. The initial orbit is completely specified, as are
the initial mass and payload energy. Since the mass fraction is speci-
fied, the mass: at retro burnout is required to be

(AVa+AV /e

m o=e Poa- MF) (my - (B7)

mpl)
where AV, 1is the velocity increment required at apogee to adjust the
perigee altitude to 185 km.
Transversality Equation
The transversality equation for this problem may be written

(I~d$+i'-d?+cdm+pd1—ndt)t
T

+ dr + o dm + pdrt

i

VanY
>
Qa
<

+
= |

H dt)t;

+ (X - dv + oy e d;+cdm+pd'r—Hdt)t§

Hocdr + 0 dm + p dt

|
~
>
[N
<
3
=

1

H dt)t;

+(X-d§?+'p"-d?+odm+pdT-Hdt)ti

1
~~
>
2
+
=

* dr + o dm +vp dT - H dt)t0

-dm . =0 (B8)
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Substituting the fixed boundary conditions into (B8) and setting the.
coefficients of the remaining (free) variations equal to zero results in

+ - -+ .
0, =0, =0, =0 (a)
(o -®_= (o - B), (®)
(o - H)y =0 ()
(AV +AV ) /e
G (MF - De 2 P 4 g; =1 (d)
r
AV
—,m0 __—a_ =\ _=% (89)
<? + 2 v n;)t =0 (e)
r
[~ Lo 30V, Gm_ - _
Mo R "3 ), 70
X r
..._+__._ = :
Xb =25+ e, ()
= - g =2
Wy =u; te—3Tr, (h)
)

The multiplier n in (B9d). and (B9e) results from the specified energy
at .retro burnout. The partial derivatives 3AV,/3V and B3AV,/3T will
be ‘determined later. Also, the multipliers A and 7T are discontinuous
at ty (with jump factor €), since energy is specified at that time (see
ref. 1). ‘

In additien to (B9),; the following specified boundary conditions
mist be satisfied:

E; (a)
Er (b) (310)
m, - m - m
0m ,_fn.1 1 ()
0 pl

Equation (B1lOc), equivalent to (B7), is the calculated value of propél—
lant mass fraction, assuming that the total mass returned to the LEO is
stage jettison mass; \the calculated mass fraction must be equal to the
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specified mass fraction.

A number of initial conditions are available in order to allow (B9)
and (B10) to be satisfied. These are:

by @ 0 ®

¥, (b) t (h)

YO (c) € (1)

: (B11)
Yo (d) m &)

A (e) £, (k)

Ny

where initial values of the multipliers A and 1y are expressed in
terms of the initial magnitude of X, pitch and yaw attitudes, and the
corresponding rates (Blla through f) as in reference 2. The angles ¥
"and vy are defined in Figure 8,

The main burn may be terminated when Ej (B10a) is satisfied, which
also determines to (Bllh). Similarly, the retro burn is terminated when
E, (B1Ob) is satisfied, and this procedure determines t, (Bllk). Also,
og (Bllg) may be calculated from (B2) in order to satisfy (B9c).

Consider next the procedure for satisfying (B9b). Since (p —~ H) is
constant when R is constant, (B9b) may be written

(o - H)r - (p - H)o = (p - H)ti - (- H)t.|2. =0 (B12)
Also,
(p-H) ,=(-H _+1J
t] e 1

]

(p - H)t+ (o - H)t +J,

2 2

where Jy; and J, are the jump discontinuities in (p - H) at t1 and
t2, respectively. Also,

(b - H)t{ = (p - H)t_5

Therefore, (Bl2) becomes

(p-H _~(-HB =@-B -J-@(-8 -J3,=0
71 t tf t3
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or
Jl + J2 =0
The jumps, J; and J,, can be evaluated by using (B2) and recalling
that Bt+ B.- = 0:
1 2

- (CB“* ) = (B ) (B138)

2
Gm Gme__ _ { cBu
= eV "3 ) T3 T2V ( r °Bu,>t+
2 2
= _(Ksmaxu)t; (B13b)
Therefore,
J, +J, =8 (Ex—o)u —(Ex-) (B14)
1 2 max| \m tI m o ut;
Now from (B9a),
+ - -+
Oy = 0y =0y =0y = 0 (315)
since o is constant between £y and ty. Also, u .- = 1 since thrust-

ing is required to reach the payload separation energ%, El. If u A = 0,

2
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(B14) cannot be made equal to zero (except for the special case K= = 0).

1
Therefore, it must be assumed that Ut = 1. Now using (B15) in (BL4)
results in 2

A A : '
Jl + J2 = csmax[(a) - (&') +] =0 (816)
t1. t2

The value of € may be chosen to satisfy (B16); the procedure is as
follows:

I L
b= A5+ eV,

2 2
m+
+ -2 2.2 - . _1.2
Az = A/AZ + € V2 + ZeAZ V2 =\ —= Xl
m
1
Solving for € results in
’\/ 2 .22 (‘“;)222
e AE . V2 * (Az . Vz) - A2V2 + T Ain
= V2' 7 -
2

which may be written as

7
m
1 )= 2 = o2
8‘vz{kz Vzi\/m ST IR P (817)

The sign choice may be made by applying physical reasoning to the problem,
It is expected that the thrust should be directed approximately parallel
to the velocity vector when it is desired to increase velocity (up to

t5,) and approximately antiparallel to the velocity vector when it is de~-
sired to decrease velocity (from tF to ty). Then

e LR

2
AP
. ~
A IS
m+
g ~ %—' -, —%-Xl
2 m7

But
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A= s + eV

2 2 2
+ +
aTi, 2oz s (2K | - {209
2°2 V2 2 " \p-J2 \m—/ 12
2 1
Therefore, the minus sign should be chosen:
ot 2
1l s s 22 =, 52
E=3 Ay Vo S |A2 X Vzl
2 my

This procedure for calculating € eliminates (B11li) and (B9b) from the
boundary value problem. Also, the initial value Ap (Blle) may be chosen
to satisfy (B9d) without affecting the trajectory, since the costate
equations are homogeneous in the multipliers.

Finally, it remains to manipulate (B9d) and (B9e) into a more suit-
able form. The value of n may be chosen to equate the magnitude of
the left and right sides of (B9a), i.e.,

= mo MV, ;
x=_ix+—c———_a— v (B18)

oV |

The sign choice in (B18) is made as follows. If the apogée impulse were
not a function of the retro burnout conditions, (B18) would reduce to

anid (B9a) would give
X = AV (a)

and (B19)
£=3F @)

Now since the retro burn removes energy, it is clear that the minus sign
- should be chosen in (B19), hence also in (B18). Therefore, n Dbecomes

- SAVa ‘
n=-/x+ - = v (B20)
v ‘

Since n has been selected to satisfy the magnitude of (B9e), equa~
tions (B9e) and (B9f) have been reduced to five equations. Three of
these may be expressed as
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AXV+Uuxrs=0 (821)

which may be verified by taking the cross products of (B9e) with V and
(B9f) with T, adding, and noting as in appendix B of reference 3 that

DAV _ dAv _
_aXV+"‘§?§‘><?=O
av

Equations (B21) are constants of the motion which are not affected by
the jump in X and ¥ at ty (egs. K (B9g) and (B%h); see ref. 3), and

are used to calculate Yor Yoo and AO' Specifically, the result is

Yy = 0

L3

Yo
v = [}(A XV - A xE) é]
O— ~ -~

(AxTF *h t

The remgining two equations in (B9) can be expressed as

0 (B22)

0

8 3AV _
(x+1“§’————-—_i\-v=nv2 (2)
¢ o/
(B23)
L ao V) Gm,
Bre R ) Ty

The initial and final conditions in the two point boundary value problem
are as follows,

Initial conditions Final conditions
¢O eq. (B10c)
¢0 eq. (B23a)
™1 eq. (B23b)

Calculation of Apogee Impulse and Partial Derivatives

The AV, required to raise the perigee altitude of the transfer
orbit to the final LEO altitude is given by
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2ur

2ur
£ + -
=V -~V (B24)
ra(ra + rf) ra(ra + rp) a a

where r, and r, are the apogee and perigee radii of the retro burn-
out elliptical orgit, respectively. From (B24) it follows that

BAVa Gmer Zra + rf ara

£
ok T 2 2 | 5%
a ra(ra + rf)
Gm ar r (2r + r ) or
- e . 1 ___p - P a _— P . a (st)

v_ 2 3x 2 2 3x

a (r +1r) r(r +1r)

a ) a‘a P

where X stands for either T or V. Also,

_ e
3T e ()
vxh (p ~
or G (r > t (b)
_ e
or e
ara -h x ;-+ r;;
v eGm ' (c)
e
Srp hxT- ri?l
v eGm @

where t  is the retro burnout radius.
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TABLE I.

APPROXIMATE METHODS.

25

SPECIFIC IMPULSE, I, 444 SECONDS

- COMPARISON OF PAYLOAD CAPABILITIES DETERMINED BY EXACT AND

TTT, TAT, o MF
hrs min

24 3 1.0 0.87
24 6 1.0 .87
24 6 1.0 .90
24 6 1.0 .90
12 3 0.3 .90
12 0 0.3 .90

C3, Normalized payload mass, mpl/mo
kmzlsec2 Exact Approximate Difference
S e ;

15 0.1227 0.1227 0.0000
15 .1287 .1287 . 0000
15 .2108 .2108 .0000

5 .2937 .2936 .0001
25 .1003 .1003 .0000
25 L1121 .1119 .0002
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. RATIO OF PAYLOAD MASS TO IGNITION

RATIO OF PAYLOAD MASS LOSS TO IGNITION MASS, Ampllm0

-d—  ——— SPECIFIC IMPULSE, 1, 444 SEC

—=—— SPECIFIC IMPULSE, I, 460 SEC

PROPELLANT
MASS FRACTION,

o
A%

10 2 30 20 50
VIS-VIVA ENERGY, C5, KMZ/SEC?

Figure 1. - ideal performance capability. [gnition thrust-
to-weight ratio, a, infinite; total trip time, TTT, zero;
turn-around time, TAT, zero.
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// //
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TURN-AROUND TIME, TAT, MIN

Figure 2. - Effect of turn-around time. Ignition thrust-
to-weight ratio, o, 0.5 specific impulse, I, 444 sec-
onds; vis-viva energy, Cs, 15 kilometers squared per
second squared; total trip time, TTT, 24 hours.
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Figure 3. - Effect of total trip time. Ignition thrust-to-weight ratio, a, 0.5; specific impulse,
1, 444 seconds; vis-viva energy, Cs, 15 kilometers squared per second squared; turn-

around time, TAT, 3 minutes.
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RATIO OF PAYLOAD MASS LOSS TO IGNITION MASS, Ampllmo

VIS-VIVA ENERGY,

C,
KMZISEC?
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0
(A) PROPELLANT MASS FRACTION, MF, 0.90; TURN-AROUND
TIME, TAT, 3 MINUTES.
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.01 N — 1T T
N \\\\_\hﬁ— n
S S —
0 8 10

406 .81 2 4
IGNITION THRUST-TO-WEIGHT RATIO, o

(B) PROPELLANT MASS FRACTION, MF, 0.90; TURN-AROUND
TIME, TAT, 6 MINUTES.

Figure 4. - Payload loss as a function of'thrust-to-weight ratio.
Specific impulse, I, 444 seconds; total trip time, TTT, 24 hours.
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RATIO OF PAYLOAD MASS LOSS TO IGNITION MASS, Ampllm‘J
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(A} PROPELLANT MASS FRACTION, MF, 0.90; TURN-AROUND TIME,

TAT, 3 MINUTES.

.IGNITION THRUST-TO-WEIGHT RATIO, a

(B} PROPELLANT MASS FRACTION, MF, 0.90; vTURN-l’\ROUND TIME,
TAT, 6 MINUTES.

Figure 5. - Payload loss as a function of thrust-to-weight ratio.
Specific impulse, 1, 460 seconds; total trip time, TTT, 24 hours.
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ALTITUDE, z, KILOMETERS

VELOCITY, V, KILOMETERS PER SECOND

2400

1600

IGNITION THRUST-
TO-WEIGHT RATIO,

— a
——— POWERED FLIGHT 0.3
— — — COAST /
/
L /
/
| | l
400 300 1200
TIME PAST IGNITION, t, SEC
(B) VELOCITY.

Figure 6. - Time history of various trajectory parameters
for selected ignition thrust-to-weight, o, values.
Specific impulse, I, 444 seconds; total trip time, TTT,

24 hours; turn-around time, TAT, 3 minutes; propellant
mass fraction, MF, 0.90; vis-viva energy, Cs, 15 kilo-
meters squared per second squared,
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Figure 7. - Definition of probiem variables.

Figure 8. - Vehicle pitch and
yaw attitudes.
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